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PREFACE 

This report was sponsored by the Defense Advanced Research Projects Agency 
(DARPA) and monitored by the U.S. Army Topographic Engineering Center (TEC), Alexandria, 
Virginia 22315-3864 under contract DACA76-97-K-0006, titled, Learning to Populate 
Geospatial Databases via Markov Processes. The DARPA Program Manager was Mr. George 
Lukes, and the TEC Contracting Officer's Representative was Ms. Lauretta Williams. 



LEARNING TO POPULATE GEOSPATIAL DATABASES VIA 
MARKOV PROCESSES 

1. Introduction 

The goal of this contract was to develop underlying technology to help close the gap between the 
military's needs for comprehensive battlefield awareness and current image understanding (IU) 
capabilities. In particular, the primary goal was to develop machine learning technology to 
recognize semantically meaningful features such as roads, waterways, and military targets in 
aerial images so that these features could be added to geospatial databases. In particular, we 
sought to eliminate three limitations of current IU technology: 1) Number of Targets. Most IU 
systems recognize a small number of object classes within a limited domain; 2) Sensor 
Limitations. Most IU systems interpret a single, fixed type of imagery (usually EO, but 
sometimes IR, SAR, or IFSAR); a few combine data from two sensors, for example EO and 
IFSAR data; and 3) Automatic Systems. Most current IU systems require some degree of 
operator assistance, whether it is to parameterize the system based on image and/or domain 
characteristics or to restrict its application to a region of an image. 

To accomplish these goals, we suggest that IU should be approached as a Markov Decision 
Process (MDP). We believe that the technology base of IU procedures forms a library of 
discrete actions for image interpretation, and that intermediate data instances (2-D and 3-D 
images, points, lines, surfaces, etc.) form an infinite but structured search space of possible 
states. The process of object recognition can be modeled as a sequence of IU procedures applied 
to a series of intermediate states. 

Unfortunately, this contract was terminated halfway through the scheduled life of the project. To 
explain what was accomplished and the state of the project at termination, this report is divided 
into three sections. Section 2 reviews the initial proposal; Section 3 outlines the modifications to 
the original plans made at the behest of Dr. Tom Strat, who was the DARPA program manager at 
that time- and Section 4 describes the accomplishments of the project at the point of termination. 
The first two major research publications about this work - Bagging in Computer Vision, which 
appeared in the IEEE Conference on Computer Vision and Pattern Recognition in June 1998, 
and ADORE: Adaptive Object Recognition, published at the International Conference on Vision 
Systems in January 1999- are included as appendices. 

2. The Original Proposal 

The original proposal was predicated on the belief that a Markov decision process formalism is a 
constructive framework for image understanding because it distinguishes between IU procedures 
and the control strategies used to integrate them, and because it provides a mathematical model 
of control in terms of policies. Formally, a control policy is a function that maps states (in this 
case instances of intermediate data) onto actions (in this case, IU procedures); at each step of 
processing, the control policy selects the next action based on the properties of the data produced 
by the previous processing step. 



In image understanding, control policies can be used to implement object-specific and task- 
specific recognition strategies. For example, the strategy for recognizing traditional, rectilinear 
buildings may be completely different from the one for recognizing Quonset huts.  Modeling IU 
as an MDP allows the introduction of reinforcement learning (RL) techniques for training 
object-specific and task-specific control policies from examples. Reinforcement learning not 
only makes it possible to acquire large numbers of object recognition policies with less effort 
(and no reprogramming), it also produces well-motivated policies that maximize a utility 
function based on cost and accuracy. RL control policies are robust, in the sense that if a sensor 
is unavailable or an IU procedure fails, the control policy will react and select an alternative 
action. 

We proposed to build a prototype system to learn control policies for 3-D object recognition 
using reinforcement learning, and to evaluate the system on the Ft. Hood and Kirkland/Sandia 
data sets. That system, that we now call ADORE1, was to draw upon IU procedures from the 
IUE, KBVision and Khoros image libraries, as well as IU procedures developed locally at 
Colorado State University and the University of Massachusetts. Whereas we had already 
demonstrated some initial, limited success in learning control policies to identify objects in 2-D 
images prior to this proposal, our new work was to emphasize learning to extract 3-D 
representations of objects from various types of sensor data (initially IFSAR and pairs of 
overlapping EO images). 

Two methods of training were proposed for 3-D-AMORE. The first, lower-risk method uses 3-D 
CAD models of example object instances as the basis for the reward signal. This method applies 
when 3-D models are available, for example, from a partial site model or BRL/CAD models of 
military targets. The second, higher-risk method would exploit the redundant information in 
overlapping 3-D images without relying on pre-existing models. In this method, policies are 
trained by noting the position of objects in overlapping 3-D images, and extracting 3-D 
representations of the objects (in terms of grouped 3-D primitives) from one of those images. 
The reward signal for this method is based on how well 3-D representations extracted from one 
image predict the raw sensory data in another. 

Finally, we proposed to study whether it is possible to continually adapt control policies over 
time without human intervention. In principle, it is possible to initially train control policies 
using a library of IU procedures, and then to add new procedures or sensors to the system 
afterward. By feeding a control policy's results back to itself as a training signal, the 
reinforcement learning algorithm should adapt the policy to take advantage of the new 
procedures/data. 

This proposal had its intellectual roots in a long tradition of research into object-specific and 
task-specific control of computer vision [Hanson & Riseman 78; Draper, et al., 89], and further 
develops work begun at the University of Massachusetts on learning control strategies for object 
recognition Praper 96a, 96b]. At the same time, this proposal extends these ideas in several new 
and exciting ways. First, the previous effort focused primarily on classifying objects (such as 
rooftops) in 2-D images. This proposal focused on extracting 3-D representations of object 

1 ADORE: Adaptive Object REcognition 



instances as well as identifying them, and will develop methods for learning to recognize objects 
in 3-D without a-priori models, as mentioned above. In addition, we propose to study how to 
continuously adapt control policies during normal operation (as opposed to during initial 
training)  "Die idea of an IU system that continually improves itself during operation without 
human intervention was perhaps the most exciting one of this proposal. It implies for example, 
that new sensors or IU procedures could be added to an operating IU system without 
reprogramming the system or even taking it off-line. 

We believe that the impact of this work - had it been completed to fruition - would go far 
ZloT±t*™cäiJd^Hes. During the last 20 years, the field of image ******** 
Evaded into 10-20 (or more) subfields, each with a narrowly-defined problem focus. Within 
ea^h ubfield, theories have been developed and tested and different solution methodobgies 
have been adopted. As a result, there are now several good and improving algorithms for edge 
Sine" action (straight and curved), feature tracking, depth from motion^(two-frame and 
muliframe), came a calibration and 3-D pose determination, to name jus a few of Je areas n 
which progress has been made. Progress in 3-D vision has been particularly strong the advent of 
3-D IFSAR sensors and improvements in stereo processing now provide basic procedures for 
exacting and reasoning about 3-D information. One of the areas in which relatively httle 
^greSbeen made8 however, is the so-called «high-level» vision. We believe that tins lack 
of process results from the lack of a theory of vision. Without a common framework for 
^^h^vd image interpretation or a mathematical basis for comparing and analyzing 
S3 syLns, progress in this area has stalled. We believe that the Markov Decision 
SS(Sm5d^&es^e type of framework that is needed to enable progress not only m the 
^^Loa of geosfpatial databases, but of many complex image understanding tasks. 

3. Modifications to the Original Proposal 

When we were notified that this proposal would be funded in January 1997, we were asked to 
malcertain changes by Dr. Tom Strat, who was then the DARPA program manager. The most 
Samatic chLce was that the subcontract to the University of Massachusetts was dropped, and 
tToneywS nSad used to add Dr. Ross Beveridge (of CSU) and one of his students to the 
S^TtoW a dramatic effect on the project, since UMass was to provide the optical stereo 
£d IR visfon procedures to the project. Dr. Beveridge, on the other hand, is an expert in target 
Cognition and 2-D model matching, and brought procedures for these activities to the project. 

The contractual changes dropping the University of Massachusetts and adding Dr. Beveridge's 
team toTLtract were formally negotiated with DARPA. Unfortunately, the corresponding 
h^gesTo the deliverables stemming from these changes were never put * ™^£* a 

they were negotiated between Dr. Strat, a TEC representative, Dr. Bevendge and Dr Draper at 
the APGD kick-off meeting in California. At this meeting, it was agreed that the 3-D 
.construction and IR aspects of the project would be dropped, and^the proje<:t would fecus on 
learning 2-D recognition strategies, including strategies with embedded ATRrout nes. The 
™ng was thafthe underlying technology with regard to learning, ^f^ctote« 
recognition is the same whether the task is 2-D or 3-D, and that by concentrating, die project s 
resources on 2-D recognition, progress in learning and control would be maximized. (Note that 



2-D vision procedures are far more widely available through Khoros and the IUE than are 3-D 
procedures.) 

At this meeting, the following list of milestones for the project was agreed to: 
1.   Six Months: 

a) Software infrastructure for control of vision procedures developed 
b) Experiment showing that open-loop strategies outperform closed-loop strategies 

2    One Year: 
a) Recognition of two objects using automatically trained control policies 
b) Evaluation of those control policies. 

In December 1997 we presented the first two milestones at the APGD workshop in Ft. Benning, 
GA. At this workshop, we reported that the first version of the software infrastructure for the 
project was complete. We reported the results of a study in which we compared the optimal 
closed-loop policy for a simple recognition task to the optimal open-loop policy for the same 
task. Unfortunately, this result was widely misunderstood by the audience as a report on 2-D 
roof recognition. 

In fact, the intent of this study was to measure the relative improvement of closed-loop control 
vs. open-loop control for a simple 2-D recognition task. The motivation for this study (and the 
reason it was included in the scheduled milestones) is that the complexity of the Markov model 
is justified by the fact that it produces open-loop strategies. An open-loop strategy is defined as 
a strategy in which the sequence of vision procedures is not fixed before recognition begins; 
instead, new procedures are selected dynamically based on the results of previous actions. 
(Strategies in which a fixed sequence of procedures are selected a priori are called closed-loop 
strategies, and most other systems for learning visual control policies learn closed-loop 
strategies, e.g. [Au & Wang, Peng & Bhanu]). 

Reinforcement learning models vision as a Markov decision process, and produces open-loop 
strategies. One of our first tasks was to justify this expense by showing that open-loop strategies 
outperform closed-loop strategies on even simple vision tasks.   Logically, the more complex the 
task, the greater the benefit of closed-loop control over open-loop control should be ; therefore, 
we selected as our performance task the goal of finding rooftops in aerial images of a residential 
section of Ft. Hood, and collected a small library of simple (mostly pixel-based) vision 
procedures for accomplishing this task. We then exhaustively applied all combinations of our 
vision procedures to a set of training images, and by reasoning backwards measured 1) the 
average reward (measured as accuracy) of the best possible closed-loop strategy, and 2) the 
average reward of the best open-loop strategy. We also considered a third type of hybrid 
strategy (similar to the type being learned by [Maloof, et al]) in which a fixed sequence of 
procedures is selected a priori, but a dynamically trained classifier is inserted between each 
processing step. 

The results of this study are shown in Figure 1. The closed-loop strategy performed an order of 
magnitude better than the open-loop strategy, as expected. The hybrid strategy (shown in the 
middle of Figure 1) performed well - within 10 percent of the closed-loop strategy - but was still 
non-optimal. We interpreted these results as justification for the Markov-based approach. 
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Figure 1: Results of Closed-loop vs. Open-loop Milestone 

Unfortunately, many in the audience misinterpreted this study as a new method for recognizing 
rooftops  In fact, our intent was expressly not to introduce any new recognition techniques, but 
to use off-the-shelf vision procedures; moreover, we were limited to a small procedure library 
since our method was to exhaustively apply the procedures to the training images to guarantee 
(independent of inference method) that the optimal control strategies were found for each 
category of control policy. Perhaps this misunderstanding emphasizes the notion that this 
approach to object recognition is truly novel, and unfamiliar to this community. (Perhaps, too, 
we could have presented it more clearly.) 

Shortly after the Ft. Benning meeting, there was a site visit from the new DARPA program 
manager George Lukes. At this site visit, we demonstrated the software infrastructure, and an 
example'of the system learning object recognition strategies for two objects: rooftops and 
maintenance rails (of the type used to maintain vehicles in the Ft. Hood motor pool). Although 
neither object was an overwhelmingly difficult target (the training rails, m particular, are quite 
distinctive), we thereby demonstrated the capability to 1) recognize two object classes (ahead of 
schedule), and 2) to learn to recognize two disparate object classes using a single system. To our 
knowledge, this later capability is unique. 



At the site visit, Mr. Lukes told us that he was unaware that the project had been refocused by 
Dr. Strat. Mr. Lukes subsequently decided to terminate the contract early because we were not 
doing 3-D reconstruction. While it is true that we did not do 3-D reconstruction as called for in 
the original proposal with UMass, we note that 1) we had achieved all scientific and technical 
milestones agreed to with Dr. Strat at the kick-off meeting; 2) we were making strong progress 
toward our (mutually refocused) objectives; and 3) the technology we were developing is critical 
to both 2-D and 3-D object recognition. 

While in Ft. Collins for the site visit, Mr. Lukes suggested that if we were going to do 2-D object 
recognition, and if we were going to recognize buildings as one of our target objects, then it 
would be more appropriate to find the footprint of the partially occluded buildings than to find 
the visible portion of the rooftop. Since finding the footprint of an occluded building requires 
recognizing the architectural plan of the building and distinguishing it from other, similar 
architectural plans, this gave us a set of similar object classes to distinguish from each other - the 
task on which we demonstrated our year-end progress. 

4. Accomplishment: The ADORE system 

The goal of the adaptive object recognition (ADORE) project is to avoid knowledge engineering 
by casting object recognition as a supervised learning task. Users train ADORE by providing 
training images and training signals, where the training signal gives the desired output for the 
training images. ADORE learns control strategies that dynamically select vision procedures in 
order to recreate the training signal as closely as possible from the training images. This control 
strategy can then be used to hypothesize new object instances in novel images. 

To learn control strategies, ADORE models object recognition as a discrete control process. The 
state of the system is determined by data produced by vision procedures. For example, the state 
of the system might be a region of interest (ROI), a set of 2-D line segments, or a 2-D contour. 
The actions are vision procedures that change the state of the system by producing new data from 
current data. A control policy is a function that maps states onto actions. In the context of 
ADORE, control policies map data onto vision procedures, thereby selecting the next action at 
each step of the recognition process. 

At a systems level, ADORE is most easily thought of as two distinct components: a run-time 
execution monitor that applies vision procedures to data, and an off-line learning system that 
trains control policies. 

4.1) The Execution Monitor 

The execution monitor is a run-time loop that begins when an image is presented to the system. 
On each cycle, it evaluates the control policy on the current data, thereby selecting a vision 
procedure. It then applies the vision procedure to the current data, producing new data. This 
loop continues until a vision procedure returns without producing any new data. 

Of course, this simple description glosses over some important details. After every vision 
procedure, the execution monitor measures features of the output data to be used in training 



control policies. The execution monitor also measures the run-time of each procedure, to be 
used as a component in the reward function if the goal is to train control policies that make 
tradeoffs between time and accuracy. Finally, there are two special procedures - called accept 
and reject - that return no data. The accept procedure signals that an object instance has been 
found- during training, accepted data tokens are compared to the training signal and a reward or 
penalty is generated. The reject procedure signals that the current data should be rejected; during 
training, it always returns a reward of zero. 

In the interests of generality, the execution monitor is independent of the vision procedure 
library  Each vision procedure is an independent unix executable; a library file tells the 
execution monitor the number and type of input arguments for each procedure, the number and 
type of output arguments, and the unix pathname. As a result, vision procedures can be added or 
removed from the system simply by editing the library file. Similarly, the execution momtor is 
independent of particular data representations, since all data tokens are kept in files. For each 
data type the library file tells the execution monitor 1) the name of the data type (so the momtor 
can match data tokens with arguments to vision procedures); 2) the number of features measured 
(for function approximation - see below); and 3) the path of the unix executable for measuring 
features; thus new data types, like new vision procedures, can easily be added to the system. 
(Note that one of the original goals of the original proposal was to keep the systems and the 
vision procedure library separate, so that new vision procedures could be easily introduced into a 
working system.) 

4.2) Control Policies 

The execution monitor is a control loop for applying vision procedures to data. The control 
policy directs the execution monitor by selecting a vision procedure at each step. Since the 
choice of vision procedure depends in part on the target object class and image domain, a 
different control policy is learned for every object recognition task. 

Control policies are functions that map data tokens (represented in terms of their features) onto 
vision procedures. In order to learn sound control policies, object recognition is modeled as a 
discrete control problem. In particular, the state of the system is always defined by the features 
of the current data. The vision procedures are the discrete actions, and these actions are non- 
deterministic in the sense that we cannot predict the features of the output based solely on the 
features of its input. 

To train a control policy, we train a Q-function for every vision procedure. In control theory, a 
O-function is a function that predicts the expected reward that will follow from applying a 
specific action to the current state. For example, in ADORE we train a Q-function for predicting 
the reward that will result from applying the segmentation procedure to an ROI, based on toe 
features of the ROI   We also train Q-functions for predicting the rewards that will follow from 
applying the active contour procedure to an ROI and the correlation procedure from an image. 
Control policies are implemented by evaluating the Q-function of every vision procedure that 
can be applied to the current data (based on its datatype) and selecting the procedure with the 
highest Q-value. 



It is important to note that the Q-function predicts the total reward that follows a procedure, not 
just the immediate reward. For example, in the experiments described below, the immediate 
reward for resegmenting an ROI is zero, since the segmentation procedure returns a 2-D contour 
while the training signal is given in terms of ROIs. Nonetheless, there can be a delayed reward 
for resegmenting an ROI, since the resulting contour can be transformed into another ROI 
through the Generalized Hough Transform procedure. The Q-function for the segmentation 
procedure predicts this delayed reward, not just the immediate reward from the segmentation 
procedure. 

4.3) Off-line Learning 

The control and artificial intelligence literatures contain many techniques for learning optimal Q- 
functions for control problems with discrete state spaces. If the transition probabilities 
associated with the actions are known (a so-called process model), dynamic programming can be 
used to estimate Q-values and produce an optimal control strategy. In the absence of a process 
model, reinforcement learning (most notably the temporal difference [Sutton, 1988] and Q- 
learning [Watkins, 1989] algorithms) have been shown to converge to optimal policies in a finite 
number of steps. 

Unfortunately, the object recognition control problem, as defined here, depends on a continuous, 
rather than discrete, state space. Tesauro [Tesauro, 1995] and Zhang & Dietterich [Zhang, 1995] 
have shown empirically that neural nets can approximate Q-functions for continuous feature 
spaces within a reinforcement learning system and still produce good control policies. 
Unfortunately, their method required hundreds of thousands of training cycles to converge. 
ADORE has a sequence of continuous feature spaces, one for each data representation (images, 
ROIs, contours, etc.). This requires getting a sequence of neural nets to converge on a control 
policy. Although theoretically possible, we did not succeed in making this work. . 

Instead, we train Q-functions by optimistically assuming that the best control policy will always 
select the action that creates the highest possible reward for every data token. Strictly speaking, 
this assumption is not always true: a control policy maps points in feature space onto actions, and 
it is possible for two different tokens to have the same feature measurements and yet have 
different "optimal" actions. Nonetheless, the optimistic assumption is usually true, and it breaks 
the dependence between Q-functions, allowing each neural net to be trained separately. 

In particular, we approximate Q-functions by training backpropagation neural networks. The 
training samples are data tokens extracted from the training images. For each training sample, 
we apply all possible sequences of procedures, in order to determine which procedure yields the 
maximum reward. A neural network is trained for each vision procedure using the data features 
as input and the maximum reward from the data created by the vision procedure as the output. In 
this way, the neural net leams to approximate the future reward from an action under the 
optimistic control assumption. 

4.4) Bagging 

One aspect of this formulation of the object recognition problem is that it requires highly 
accurate function approximation if the control policy is to be optimal. In order to maximize the 



accuracy of our neural nets, we turned to a new technique from the machine learning community 
called bootstrap aggregation, or bagging. The approach was originally developed by Breunan 
[94], and is similar to work by Dietterich on improving non-parametric classification [Diettencn 
& Bakiri 95, Kong & Dietterich 95 & 97] (see also [Heath, et al 93, Kwok & Carter 90]). The 
basic idea is to randomly subsample the training set and train multiple function approximate 
from these subsampled sets. The aggregated or "bagged" predictor is then the average of the 
predictions for a sample. 

Statistically bagging is a theoretically sound technique that reduces prediction error by reducing 
the variance component of the error. (The bias error is unchanged.) This technique has not been 
widely used in computer vision. In [Draper & Baek 98] we were able to show that bagging 
produced an even larger increase in accuracy for our computer vision control problem than had 
been reported by Breiman for other tasks. More importantly, as part of this project we were able 
to show both theoretically and in practice that if you weight each component network by the 
inverse of its mean squared error (MSE) on a validation training set, men the variance error in 
the bagged predictor is reduced ever further. (This original contribution has been submitted to 
IEEE Transactions on Pattern Analysis and Machine Intelligence.) 

5. Experiments 

To test ADORE in a tightly controlled domain, we trained it to recognize styles of houses in 
aerial images such as the one in Figure 2. In the first experiment, the goal was to find duplexes 
of the type shown in Figure 3. The training signal is a bitmap that shows the position and 
orientation of the duplexes in the training images; Figure 4 shows the training signal matching 
the image shown in Figure 2. The reward function used to evaluate hypotheses during training is 
the size of the pixel-wise intersection of the hypothesis and the training signal, divided by the 
size of the union. This evaluation function ranges from one (perfect overlap) to zero (no 
overlap). 

Figure 2: A nadir-view aerial image of the residential section of Fort Hood, TX. 



Figure 3: A Duplex 

Figure 4: The training signal for Duplexes for the training image shown in Figure 2 

5.1) The Vision Procedure Library 

The vision procedure library contains 10 2-D vision procedures, as depicted in Figure 5, many of 
which are derived from ATR routines. Three of the procedures produce likelihood images (with 
orientation information) from intensity images and a template2. The rotation-free correlation 
procedure [Ravela, 1996] correlates the template at each position in the image by first rotating 
the template until the direction of the edge at the center of the template corresponds to the edge 
direction at the center of the image window. The TAStat procedure is a modification of the 
algorithm in [Nguyen, 1990]. For every image window it also rotates a mask of the object until 
it aligns with the local edge data, and then measures the difference between the intensity 
distributions of the pixels inside and outside of the mask. The greater the difference between the 
intensity distributions, the more likely the mask matches an object at that location and orientation 
in the image. Finally, the probing procedure also uses edge information to rotate the template for 
each image window, and then samples pairs of pixels in the image window, looking for edges 
that match the location of edges in the template. 

2 In all of our experiments, we assume that a template of the object is available. 
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Figure 5: An iconic depiction of ADORE's current vision procedure library. The boxes 
represent intermediate image representations, such as likelihood images, image contours or 
«regions of interest" (image chips with masks). Depending on the quality of the photocopy, 

dark boxes are generally gray-scale images. Note that the peak detection procedure 
produces on the order of 20 ROIs each time it is called. 

Regions of interest (ROIs) are chips from the original image that are hypothesized to correspond 
to object instances; each ROI also has a mask that details the hypothesized position and 
orientation of the object. ROIs can be extracted from likelihood images using a peak detection 
procedure, which finds the top N peaks in a likelihood image above a threshold. For these 
experiments, the peak detection procedure was parameterized to extract a maximum of 20 peaks 
from each likelihood image. 

Five procedures can be applied to any ROI. Two of these actions are the special actions 
mentioned in Section 4.1, accept and reject. Accept and reject are terminal actions that end the 
recognition process. The other three options are: 1) an active contour procedure [Kass, 1988J 
that modifies the outline of an ROI mask until the contour lies along edges m the original image; 
2) a segmentation procedure [Comaniciu, 1997] that extracts the boundary of a new region (as a 
2-D contour) within the image chip; or 3) a straight line extraction procedure [Bums, 1986J. 

11 



A Generalized Hough Transform procedure [Ballard, 1981] matches 2-D image contours to the 
contour of a template, thus creating a new ROI. A symbolic line matching procedure (LiME; 
[Beveridge, 1997]) finds the rotation, translation and scale that maps template (model) lines onto 
image lines, again producing a ROI. It should be noted that LiME transforms hypotheses in 
scale as well as rotation and translation, which puts it at a disadvantage in this fixed-scale 
domain. 

5.2) Finding Duplexes 

To test the system's ability to learn duplex recognition strategies, we performed N-fold cross- 
validation on the set of eight Fort Hood images. In other words, we divided the data into seven 
training images and one test image, trained ADORE on seven training images, and then 
evaluated the resulting strategy on the test image. We repeated this process eight times, each 
time using a different image as the test image. All the results presented in this paper are from 
evaluations of the test image. 

Figure 6 shows the results of two tests, with the ROIs extracted by ADORE overlaid in red on 
top of the test image. As a crude measure of success, ADORE found 21 out of 22 duplexes, 
while producing six false positives. The only duplex not found by ADORE can be seen in the 
image on the right of Figure 6- it is the duplex that is half off the bottom right-hand corner of the 
image. Every duplex that lies completely inside an image was recognized. (The right side of 
Figure 6 also shows one false positive.) 

Figure 6: Duplexes extracted from two images. In the image on the left, all three duplexes 
were found. On the right image, a false positive appears on the upper right side. Also, the 
half-visible duplex to the bottom right was the only instance missed during testing - and 
only half of that duplex lies inside the image. 

Analyzing ADORE in terms of false positives and false negatives is misleading. Much of the 
benefit of ADORE's dynamic strategies lies in its ability to refine imperfect hypotheses, not just 
make yes/no decisions. ADORE maximizes its reward function by creating the best hypotheses 
possible, given the procedure library. Table 1 gives a quantitative measure of ADORE's 
success. The left-most entry in Table 1 gives the average reward across all 22 positive duplex 
instances from the optimal strategy, where the optimal strategy is determined by trying all 
sequences of procedures and taking the best result. The second entry gives the average reward 
generated by the strategy learned by ADORE. As further points of comparison: the third entry in 
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Table 1 gives the average reward for duplex instances if no further processing is applied after 
hypotheses are generated; the fourth entry gives the average reward if every duplex ROI is 
segmented and the Generalized Hough Transform is used to reposition the ROI in terms of the 
region boundary; the fifth entry gives the average reward if the active contour procedure is 
applied (followed by the Generalized Hough Transform); and the sixth entry is the average 
reward if lines are extracted from hypotheses, followed by the LiME symbolic matcher. 

Table 1. Comparison between the optimal policy, the policy learned by ADORE, and the 
four best fixed policies. The first row considers only positive instances; the second includes 
a penalty of-1 for each false positive. Note that there are 24 object instances. 

Optimal 
Policy 

ADORE 
Policy 

Avg. 
Reward 

0.8991 0.8803 

Fixed: 
Accept or 

Reject 

Fixed: 
Segment 

Fixed: 
Active 

Contours 

Fixed: 
Line 

Extraction 

0.7893 0.8653 0.7775 0.1807 

Two conclusions can be drawn from Table 1. First, the strategy learned by ADORE for this task 
is within about 98 percent of optimal. Second, the dynamic strategy learned by ADORE, 
although not perfect, is better than any fixed sequence of actions. (The best fixed sequence of 
actions is to always segment ROIs and apply the Generalized Hough Transform.) This implies 
that dynamic strategies are worth learning. 

5.3) Finding Smaller Houses 

Having succeeded in finding a good strategy for finding duplexes, we expected to easily repeat 
the process for other styles of houses. Indeed, we expected the resulting policies to be very 
similar to the duplex policy; therefore, we repeated the experiment using the same methodology 
as above but with the house styles shown in Figure 7. 

To our dismay. ADORE identified 18 of 19 instances of the house style A but generated 22 false 
poshes   Combining the results from house styles A through D, ADORE found 47 out of 61 
instances, while generating 85 false positives. 

Figure 7: Templates of four other styles of houses (called A through D going left to right). 

Why is this problem harder than finding duplexes? The most critical control decision m this 
domain comes after ROIs are extracted from likelihood images. At this point, ADORE has a 
choice of five procedures: segmentation, active contours, line extraction, accept or reject. Ut 
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these five, line extraction rums out to never be the optimal choice, but the four other options are 
optimal for some ROIs. 

The control policy must select the optimal action based on features of the ROIs. By inspecting 
the weights of the neural net Q-functions trained for duplex recognition, we discovered that two 
of the eleven features dominated the control decision. The most important feature measures the 
average image edge strength along the boundary of the ROI. The second most important feature 
measures the percent of pixels outside the mask of the ROI that have roughly the same intensity 
value as pixels under the mask. (We informally refer to these as "missing" pixels, since their 
intensities suggest that they were accidentally left out of the hypothesis.) 

Based mostly on these two features, ADORE learns a strategy for picking the next procedure. If 
we interpret the behavior of the Q-functions in terms of these two features, we can describe the 
control strategy learned by ADORE as follows (see Figure 8): ROIs with very high boundary 
edge strength and very few "missing" pixels should be accepted as is. (The points in Figure 8 
correspond to training samples, color-coded in terms of the optimal action for each ROI. Dark 
blue points correspond to ROIs that receive approximately the same reward whether segmented 
or accepted as is.) If the edge strength is less high but relatively few pixels are "missing," then 
the ROI should be segmented. Although many false hypotheses - shown in yellow in Figure 8 
because the optimal action is to reject them - are segmented according to this rule, there is 
another control decision after segmentation and the Generalized Hough Transform, where false 
hypotheses can be rejected and true ones accepted. This decision is made easier by the result of 
the segmentation procedure. There also is one small spot in the feature space where the active 
contour procedure is optimal. This is harder to explain and may result from the training set being 
a little too small. Finally, if the missing pixel count is high or the edge strength is low, reject the 
ROI. The solid boundaries in Figure 8 approximate our interpretation of the control policy's 
decision boundaries. 

If we look at the edge strength feature for the other house recognition task, we find that it does 
not discriminate as well. It turns out that if you overlay the four templates shown in Figure 8 on 
top of each other, most of the boundaries are aligned. As a result, if a ROI for style A is 
incorrectly placed over an instance of styles B, C, or D, the edge's strength is still very high. 
(The same is true for ROIs of style B, C, and D). As a result, when looking for one style of 
house, false hypotheses created by instances of the other style have high edge strength, so the 
feature is not very discriminating. As a result, ADORE has a harder time learning a strategy that 
can distinguish between true instances and false ones, with the result that many more false 
hypotheses are created. In effect, the difference in feature space between one style and the next 
is too small to reliably distinguish between them. 
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Figure 8: ROIs plotted in two dimensions of the eleven dimensional feature space. The 
color of the ROI point indicates the optimal control decision for that ROL (Blue ROIs 
receive roughly the same reward whether they are submitted as is or refined through 
segmentation.) The ellipses correspond to our interpretation of the decision boundaries 
learned by the neural networks. 

6. Conclusion 

Under this contract, we built a prototype adaptive object recognition system that is capable of 
learning good obj ect-specific recognition strategies when features of the intermediate data 
representations provide enough information to base intelligent control decisions on. Using this 
prototype, we successfully learned a dynamic control policy that outperforms any fixed strategy 
for a recognition task. Using the same prototype, we were then able to recognize other objects, 
some of which were similar to the first object type in the sense of being building designs, one of 
which was completely unrelated (the maintenance rails from the motor pool of Ft. Hood). In so 
doing, we met and exceeded our target milestones for the first year of the project. 

At the same time, we have identified the primary weakness of our system. Without sufficiently 
discriminating features, it is not possible to learn effective control policies. (It should be noted 
that under these conditions, it is not possible to create effective control policies by hand, either.) 
We had just begun to look at the issue of dynamically selecting token features as well as vision 
procedures, and were beginning to implement a feature selection system based on the work of 
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[Jain & Zongker 97, Almuallim & Dietterich 92, Pudil, Novovicova & Kittler 94, Baker, Nayar 
and Murase 98, Vafaie & DeJong 93, Koller & Sahami 96]. 
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Abstract 
Previous research has shown that aggregated predic- 

tors improve the performance of non-parametric func- 
tion approximation techniques. This paper presents 
the results of applying aggregated predictors to a com- 
puter vision problem, and shows that the method of 
bagging significantly improves performance. In fact, 
the results are better than those previously reported on 
other domains. This paper explains this performance 
in terms of the variance and bias. 

1    Introduction 
Function approximation and classification are ubiq- 

uitous problems in computer vision. The pattern 
recognition task of mapping from a set of (not nec- 
essarily independent) features to a predicted function 
value or label rises in object recognition, target recog- 
nition, visual navigation, and almost every other ap- 
plication of computer vision. For many years, the 
traditional approach to this problem was to estimate 
the parameters of the feature distributions, and apply 
maximum likelihood classification or related approx- 
imation techniques to predict labels/values. Unfor- 
tunately, this approach often performs poorly in the 
presence of unmodeled dependencies between features. 

To counteract this problem, many researchers have 
turned to non-parametric techniques such as neural 
networks, decision trees, and nearest neighbor classi- 
fiers. While these techniques often provide improved 
results on computer vision data sets, they are all too 
often "black boxes" to the researchers who use them. 
As a result, many researchers do not know how to op- 
timize the performance of these techniques short of 
extensive trial-and-error. 

This paper presents a technique called bagging1 for 
improving the performance of non-parametric func- 

1 Bagging is an acronym for bootstrap aggregating. 

tion approximation techniques. This approach was 
developed by Breiman [1], and is similar to work by 
Dietterich on improving non-parametric classification 
[2,4,5]. (See also [3, 6].) The basic idea is to randomly 
sample the training set and produce multiple function 
approximations. The aggregated or "bagged" predic- 
tor is then the average of the component predictions 
on a given sample. The non-obvious result is that the 
bagged predictor is significantly better than any of the 
component predictors. 

Since results from other domains do not always ap- 
ply in computer vision, this paper applies bagging to 
the task of evaluating image regions via neural net- 
works. Our results prove to be consistent with - if not 
better than - those presented by Breiman [1]. In addi- 
tion, we predict which tasks will benefit from bagging 
by measuring the variance and bias of the component 
non-parametric function approximations (predictors). 

2    Bagging 
The basic idea behind bagging is simple: train mul- 

tiple function approximations and average their re- 
sults. To clearly explain when and why this works, 
however, we have to get a little more formal. A func- 
tion approximation task can be defined in terms of a 
set W: 

W = {(Fn,j/„),n=l,...,oo}, 

where Fn is a feature vector describing a data instance, 
and 3/„ is the function value associated with instance n. 
The goal is to learn a function approximation ip such 
that yn « y'n = ip(Fn) from a training set T C W. 

Training algorithms (such as backpropagation) 
for non-parametric function approximation can be 
thought of as processes that map training sets onto 
functions (i.e. T — <p). They are typically used to 
train a single approximation ip = Train{T). In bag- 
ging, however, T is randomly subsampled (with re- 
placement) to produce M subsets TM, and each of 
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these subsets is used to train a function approxima- 
tion ifM = Train(TM)- The bagged approximation 
can then be written as: 

VbagVti) -  (VJM    Wk) 

where 

where 

Wk = l 
MSE(<pk) 

(In other words, <Pbag{Fi) is the weighted average of 
VM(Fi)-) The weighting term, WM, gives more weight 
to predictors that have lower overall mean squared 
error (MSE) than others. (Breiman does not use a 
weighting term, but we found that it significantly im- 
proved performance.) 

There are two bases for arguing the <p(,ap should be 
a better approximation than ip = Train(T). The first 
assumes that the training algorithm is unstable, in the 
sense that a small change to the training set TM results 
in a large change to approximation ifM ■ (This assump- 
tion is true for backpropagation, and Breiman argues 
that it is true for decision tree inference algorithms 
as well [1].) In this case, the function approximations 
PI,—,<PM are largely independent of each other. If 
they are also unbiased, then <£i(Fj),..., <PM{Fi) can be 
thought of as M independent samples drawn from a 
distribution whose mean is yt. As a result, the ex- 
pected value of <pba9{Fi) is yt, even if the errors in the 
individual approximations p are large. 

The second argument says that most training algo- 
rithms get caught in local optima, and as result pro- 
duce approximations <p that are accurate over part but 
not all of the feature space. Once again, the differ- 
ence among the subsampled training sets TM suggest 
that the approximations <PM 

wiU correspond to dif- 
ferent local optima. If each </>M is accurate for most 
of the feature space, then the majority of estimates 
y'iM = VM{F{) will accurately reflect y*. Moreover, 
we can once again assume that the outliers will be un- 
biased, so their expected value is zero. As a result, the 
bagged predictor should be accurate across the entire 
feature space, or at least a larger portion of the space 
than any component <PM. 

Both of these arguments can be cast in terms of 
variance and bias. In general, bias is the tendency of 
an approximation to overestimate or underestimate, 
while variance is (informally) the noise in the estima- 
tion process. In regression, it is a well-known theory 
that the expected squared error of an approximation 
algorithm on test data can be decomposed into bias 
and variance terms [7]: 

Error{Fi) = Bias2{Fi) + Var{Fi) 

and 

Bias{Fi) = yi -yi 

Var(Fi) = ET(Ti'- fHFi))2 

V? = Er(y<) 

The general result of bagging is to reduce the vari- 
ance, so that the error of an aggregate approximation 
approaches the bias error as the number of component 
approximations approaches infinity. If the component 
predictors are unbiased (which they should be over- 
all, but may not be for specific samples F{), then the 
aggregate error approaches zero. 

3    The Test Problem 
Our test case evaluates bagging on a region evalua- 

tion problem. As part of another project, we have an 
object recognition system that generates hypotheses 
in the form of labeled image regions. Working in an 
aerial image domain, we collected a data set of 3,374 
house hypotheses, each represented by a mask and a 
corresponding image chip. The task is to estimate the 
quality of hypotheses from features describing the re- 
gions. 

Figure 1: Image chips(left) and masks(right) for two 
house hypotheses. The top hypothesis gets a score 
of .87(the inclusion of the driveway is most of the 
penalty), while the lower hypothesis scores only .15 
since it barely overlaps a house. 

A total of twenty features are used to describe hy- 
pothesized regions. The features themselves are not 
unusual. They include shape features, size features, 
texture features, and brightness features. One feature 
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Figure 2: Mean Squared Error of Forty Nets vs. Bagged(Aggregated) Prediction 

MSE average 
MSE min(best) 
MSE max(worst) 
Standard Deviation 

Individual Nets 
0.0083 
0.0063 
0.0129 
0.0014 

Bagged Net : 15 nets (decrease) 
0.0036   (56.6%)  
0.0031   (50.8%) 
0.0040   (69.0%) 

0.0002 

Bagged Net : 40 nets (decrease) 
0.0034   (58.8%) 
0.0034   (45.8%) 
0.0034   (73.6%)  

Figure 3: MSE Comparison of individual nets and bagged net. The 3rd column is the result of bagging 100 times 
with 15 nets randomly selected from 40 nets in each time. 

is a shadow measure that relies on knowing the sun an- 
gle. In many respects, this task is typical of function 
approximation tasks that arise in computer vision. 

Part of what makes this task difficult is that the 
answer is not binary. Most of the hypotheses are good 
to the extent that they overlap the true position of a 
house, but they do not match it exactly. The quality 
of a hypothesis depends on how closely it matches the 
ground truth data, and is measured according to: 

\HnT\ 
\HvT\ 

where H is the set of hypothesized pixels, and T is 
the true set of house pixels. (Note that this function - 
the size of the intersection of the pixel sets divided by 
the size of their union - is bounded between zero and 
one.) Figure 3 shows two hypotheses, one with a high 

score (.87) because it matches the true house region 
closely, the other with a lower score (.15). 

4    Results 
The goal of this experiment is to test whether bag- 

ging improves accuracy in computer vision problems, 
and if the improvement is in line with the results 
reported in [1]. Secondarily, we are also interested 
in whether the reason for the improvement (if any) 
matches the explanation given in Section 2. 

We tested the bagging technique using backpropa- 
gation to train fully-connected neural networks with 
30 hidden units, a sigmoidal squashing function and 
a momentum term of 0. In order to test the bagging 
technique, we split our total database of 3,374 samples 
into a training set T of 2,874 samples and a test set U 
of the remaining 500 samples. We then trained a total 
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of forty networks, where network ipi was training by 
randomly selecting 2,000 samples from T to form T,, 
and then applying backpropagation to train network 
<Pi over data set T*. 

Figure 2 shows the result of applying these networks 
to the test set U, with and without bagging. The 
dash-dot(-.-) line shows the mean squared error(MSE) 
of the test set on each of the forty nets. The solid 
line is the MSEs that result from bagging, so that 
for example the MSE of bagging the first five nets is 
0.0048, while the MSE from bagging ten nets is 0.0038. 
(Remember that the function being approximated has 
a range from 0 to 1.) For comparison's sake, the dotted 
line(..) is the running average of the MSEs of the nets. 

The immediate conclusion from Figure 2 is that 
bagging leads to a striking improvement. The MSEs of 
the forty individual nets ranged from 0.0063 to 0.0129 
with an average of 0.0083, while the MSE from bag- 
ging the forty networks is 0.0034 (Figure 3). Bagging 
therefore leads to an improvement of 58.8% over the 
average performance of the individual nets and an im- 
provement of 45.8% over the best of the component 
nets. In addition, although bagging is clearly more 
expensive than other approaches (since it trains mul- 
tiple nets), from Figure 2 we see significant improve- 
ment from bagging as few as five neural nets, and we 
see almost all of our improvement by the time fifteen 
nets have been bagged. The second column of Figure 3 
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Figure 8: Prediction errors for the three samples with the highest variance across the first twenty nets( net 
#0 net #19). The variance is clearly visible in the different errors produced by each net, whüe the average 

prediction(net #20) for each sample is reasonable. 

shows it more clearly. The values have been drawn by 
bagging 15 randomly selected nets 100 times. The av- 
erage error shows that the performance is very close 
to the results gained by bagging 40 nets. 

Not only are these results consistent with those re- 
ported in [1], the improvement of 58.8% ranks it as the 
best. (Breiman's best was an improvement of 47% on 
the Heart dataset at the UCI dataset repository.) In 
the test reported here, the random sampling was done 
without replacement. However, the results of experi- 
ments with replacement are not much different from 
previous test. Although the MSE is slightly worse 
(ranging from 0.0075 to 0.0174 for individual nets, 
0.0044 for bagging 40 nets), the average decrease in 
error is 64.2%. 

"Whether this is because of the domain, because 
we bagged neural nets as opposed to decision trees 
(as Breiman did), or because we added the weighting 
term, we cannot say. Either way, bagging is clearly 
beneficial in this domain. But does the reason for its 
success lie in the explanations posited in Section 2? 

Since we observed a striking improvement by bag- 
ging, if the explanations from Section 2 hold, two other 
predictions should be met: 1) the bias of the neural 
nets (viewed as a set) should be low and the variance 
of the neural nets should be high. 2) bagging reduces 

most of the variance, so the error of bagged net should 
approach the bias error. Figures 4 through 7 do in- 
deed show this to be true, which explains why there 
was so much improvement as a result of bagging. Over 
forty nets, the variance is almost 0.005, while the bias 
is 0.0015 (Figures 4 and 5). In Figure 6, we see that 
the variance of the bagged net is almost zero and the 
bias error (average of squared bias of each sample over 
multiple nets) in Figure 7 is almost same as the MSE 
of bagged net in Figure 2. 

Finally, one intuitive way to look at these results is 
to plot the three test samples with the highest vari- 
ance. As shown in Figure 8, all of these samples were 
estimated with reasonable accuracy by most of the 
nets. (We show just the first twenty nets and the 
bagged predictor in Figure 8, while the vertical di- 
mension is the error between the true and predicted 
value.) Certain nets did very poorly on certain sam- 
ples, however. For example, net #18 had an error 
of almost 0.9 (in a range from 0 to 1) on one sam- 
ple. (Nets #13 and #19 also had trouble with this 
sample.) Another sample proved problematic for net 
#7, with an error of almost 0.4. Because the aggre- 
gate predictor averages across all forty nets, however, 
these occasional failures - which occur for every net on 
at least a few samples - are replaced by more reliable 
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estimates, resulting in an aggregate predictor with far 
lower error than any of its components. 

5    Conclusion 
Aggregate or "bagged" predictors work as well or 

possibly even better on a typical computer vision 
dataset than they do on the non-visual UCI test suites 
for which results have previously been reported. 
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Appendix B: "International Conference on Vision Systems, 1999" 
(a longer version will appear in Videre) 
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1) Introduction 

As the field of computer vision matures, fewer and fewer vision systems are built "from scratch". 

Instead, computer vision systems are assembled out of standard procedures, including (but my no 

means limited to): image smoothing / image enhancement, edge and corner extraction, region 

segmentation, straight line and curve extraction, grouping, symbolic model matching (including 

Hausdorf matching, key feature matching, and heuristic search), appearance matching, pose 

determination, and depth from stereo, motion or focus. Separately, each of these procedures 

addresses a part of the computer vision problem. Sequenced together, they form end-to-end 

vision systems that perform specific tasks. 

To help users build end-to-end systems, computer vision software environments provide 

libraries of image processing and computer vision procedures, and graphical user 

interfaces to sequence them together. In Khoros [Rasure, 1994 #25], programmers build 

applications by selecting procedures (called "glyphs") from a menu and graphically 

connecting the output of one procedure to the input of another. Unfortunately, the 

Khoros procedure library is mostly limited to 2D image processing routines; high-level 

grouping and matching procedures, for example, are missing. CVIPtools [Umbaugh, 

1998 #30] is another software environment intended primarily for academic use. 

Although it also focuses mostly on image processing, it includes a slightly larger set of 

low-level vision procedures for tasks such as region segmentation and straight line 

extraction. The Image Understanding Environment (IUE) [Mundy, 1995 #21] has a more 

sophisticated procedure library for both 2D and 3D computer vision. The IUE is still 

under development, but a preliminary version is freely available. 
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Software tools such as Khoros, CVIPtools and the IUE make it easier for programmers to form 

and test sequences of vision procedures. Unfortunately, they do not help programmers with the 

underlying problem of how to select procedures for a specific task. Programmers are left to 

choose vision procedures based on intuition, and to refine sequences of procedures by trial and 

error. 

The goal of the Adaptive Object Recognition (ADORE) project is to provide a theoretically sound 

mechanism for dynamically selecting vision procedures based on the task and the current state of 

the interpretation. We eventually seek to build a system that can adapt to any recognition task by 

dynamically selecting actions from among dozens (if not hundreds) of vision procedures. Not 

surprisingly, this ambitious goal exceeds our current grasp. This paper describes an initial 

prototype of ADORE that learns to find houses in aerial images using a library often vision 

procedures. While this system is clearly short of our ultimate goal, it is an example of an end-to- 

end system that adapts by learning to dynamically control vision procedures. This paper 

describes two experiments with the prototype version of ADORE - one in which ADORE 

succeeds in finding a good object recognition strategy, and one in which it fails. 

2) Examples of Static and Dynamic Control 

Before describing ADORE in detail, let us first illustrate the type of problem it is supposed to 

solve. Figure 1 shows a nadir-view aerial image. The task is to find instances of specific styles 

of houses, such as the duplex in Figure 2. To achieve this goal, ADORE is given access to ten 

vision procedures and a template of the duplex. (Descriptions of all ten procedures can be found 

in Section 5.1.) ADORE is also given training images and a training signal that gives the position 
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and orientation of each duplex. ADORE's role is to dynamically select and execute procedures 

so as to produce duplex (and only duplex) hypotheses. 

Figure 1: A nadir-view aerial image of the residential section of Fort Hood, TX 

ADORE finds duplexes by learning a control strategy that selects a vision procedure at each 

processing step. For example, ADORE's vision procedure library currently contains three 

procedures for producing regions of interest (ROIs) from images: a rotation-free correlation 

procedure, a statistical distribution test, and a probing routine. All three can be used to generate 

duplex hypotheses, but ADORE learns from the training data that for this problem - where the 

duplexes are almost identical to each other, and lighting differences and perspective effects are 

minimal - pixel-level correlation outperforms the other two procedures. ADORE therefore learns 

a recognition strategy that begins with correlation. 

The next step is more complex. Figure 3 shows three ROIs produced by correlation. The ROI on 

the left of Figure 3 matches the position and orientation of a duplex very well. In fact, none of 

the procedures in the procedure library can improve this hypothesis, so the best action for 
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ADORE to take is to accept it as is. The ROI on the right in Figure 3, on the other hand, does not 

correspond to any duplex. The best action here is to reject it. 

Figure 2: A Duplex 

Figure 3: Three hypothesized regions of interest (ROIs). Although all three were created the same 
way, the best action for the one on the left is to accept it, while the one in the middle should be 
refined via the segmentation procedure, and the one on the right should be rejected. 

The ROI in the middle of Figure 3, on the other hand, is more interesting. This ROI roughly 

matches a duplex, but the position and orientation of the duplex are skewed, probably because the 

duplex is partially occluded in the image . In this case, the best procedure is to refine the 

hypothesis by resegmenting the image chip (using [Comaniciu, 1997 #10]) and then applying a 

Generalized Hough Transform [Ballard, 1981 #5] to align the template with the extracted region 

boundary. Figure 4 shows the resulting hypothesis after these two procedures are applied. 

Figure 4: Refined ROI for middle hypothesis from Figure 3. 
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Examples like the ones in Figure 3 demonstrate the importance of dynamic control decisions. In 

all three cases, the first procedure was the same: correlation. The choice of the next procedure, 

however, depended on the quality of the ROI produced by the previous step. In general, control 

strategies should choose procedures based not only on static properties of the object class and 

image domain, but based also on data produced by previous procedures. 

3) Related Work 

At a theoretical level, researchers argued for specialized recognition strategies built from reusable 

low-level components long before the appearance of software support tools like Khoros. As far 

back as the 1970s, Arbib argued from psychological evidence for specialized visual "schemas" 

built from reusable components [Arbib, 1972 #4]. Ullman developed a similar theory, in which 

primitive "visual routines" are combined to form specialized recognition strategies [Ullman, 1984 

#29]. Later, Aloimonos [Aliomonos, 1990 #2] and Ikeuchi & Hebert [Ikeuchi, 1990 #16] argued 

for specialized recognition strategies made from primitive vision operations in the context of 

visual robotics. 

At a practical level, researchers have been building recognition systems with special-purpose 

recognition strategies for twenty years. In the late '70s and early '80s, researchers built AI-style 

production and blackboard systems that selected and sequenced vision procedures to achieve 

specific tasks. Nagao & Matsuyama's production system for aerial image interpretation [Nagao, 

1980 #22] was one of the first, and lead to several long-term development efforts, including 

SPAM [McKeown, 1985 #20], VISIONS/SCHEMA [Draper, 1989 #11], SIGMA [Hwang, 1986 

#15], PSEIKI [Andress, 1988 #3] and OCAPI [Clement, 1993 #9]. More recently, other 

researchers [Chien, 1996 #35][Lansky, 1995 #36][Jiang, 1994 #17] have applied AI-style 
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planning technology to logically infer control decisions from a database describing the task and 

the available procedures. 

Unfortunately, knowledge-based systems are often ad-hoc. Researchers formulate rules for 

selecting procedures based on their intuition, and refine these rules through trial and error. (See 

[Draper, 1992 #12] for a description of the knowledge engineering process in object recognition) 

As a result, there is no theoretical reason for believing that the control policies that emerge from 

these heuristics are optimal or even good, nor is there any way to directly compare these systems 

or evaluate their control policies. 

Recently, researchers have tried to put the control of object recognition on a stronger theoretical 

foundation using Bayes nets (e.g. TEA1 [Rimey, 1994 #33] and SUCCESSOR [Mann, 1996 

#19]). Unfortunately, designing Bayes nets can itself become an ad-hoc knowledge engineering 

process. Other researchers are trying to eliminate the knowledge acquisition bottleneck by 

learning control policies from examples. Researchers at Honeywell used genetic algorithms to 

learn target recognition strategies [Au, 1996 #1], while reinforcement learning has been used by 

Draper to learn sequences of procedures [Draper, 1996 #13] and by Peng & Bhanu to learn 

parameters for vision procedures [Peng, 1998 #24]. Maloof et. al. train classifiers to accept or 

reject data instances between steps of a fixed sequence of procedures [Maloof, 1997 #18]. 

4) Object Recognition as a Supervised Learning Task 

The goal of the adaptive object recognition (ADORE) project is to avoid knowledge engineering 

by casting object recognition as a supervised learning task. Users train ADORE by providing 

training images and training signals, where the training signal gives the desired output for the 
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training images. ADORE learns control strategies that dynamically select vision procedures in 

order to recreate the training signal as closely as possible from the training images. This control 

strategy can then be used to hypothesize new object instances in novel images. 

To learn control strategies, ADORE models object recognition as a discrete control process. The 

state of the system is determined by data produced by vision procedures. For example, the state 

of the system might be a region of interest (ROI), a set of 2D line segments, or a 2D contour. The 

actions are vision procedures that change the state of the system by producing new data from 

current data. A control policy is a function that maps states onto actions. In the context of 

ADORE, control policies map data onto vision procedures, thereby selecting the next action at 

each step of the recognition process. 

4.1) The ADORE prototype 

At a systems level, ADORE is most easily thought of as two distinct components: a run-time 

execution monitor that applies vision procedures to data, and an off-line learning system that 

trains control policies. 

4.1.1) The Execution Monitor 

The execution monitor is a run-time loop that begins when an image is presented to the system. 

On each cycle, it evaluates the control policy on the current data, thereby selecting a vision 

procedure. It then applies the vision procedure to the current data, producing new data. This loop 

continues until a vision procedure returns without producing any new data. 
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Of course, this simple description glosses over some important details. After every vision 

procedure, the execution monitor measures features of the output data to be used in training 

control policies. The execution monitor also measures the run-time of each procedure, to be used 

as a component in the reward function if the goal is to train control policies that make tradeoffs 

between time and accuracy. Finally, there are two special procedures - called accept and reject - 

that return no data. The accept procedure signals that an object instance has been found; during 

training, accepted data tokens are compared to the training signal and a reward or penalty is 

generated. The reject procedure signals that the current data should be rejected; during training, it 

always returns a reward of zero. 

In the interests of generality, the execution monitor is independent of the vision procedure library. 

Each vision procedure is an independent unix executable; a library file tells the execution monitor 

the number and type of input arguments for each procedure, the number and type of output 

arguments, and the unix pathname. As a result, vision procedures can be added or removed from 

the system simply by editing the library file. Similarly, the execution monitor is independent of 

particular data representations, since all data tokens are kept in files. For each data type, the 

library file tells the execution monitor 1) the name of the data type (so the monitor can match data 

tokens with arguments to vision procedures); 2) the number of features measured (for function 

approximation - see below); and 3) the path of the unix executable for measuring features. Thus 

new data types, like new vision procedures, can easily be added to the system. 

4.1.2) Control Policies 

The execution monitor is a control loop for applying vision procedures to data. The control 

policy directs the execution monitor by selecting a vision procedure at each step. Since the 
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choice of vision procedure depends in part on the target object class and image domain, a 

different control policy is learned for every object recognition task. 

Control policies are functions that map data tokens (represented in terms of their features) onto 

vision procedures. In order to learn sound control policies, object recognition is modeled as a 

discrete control problem. In particular, the state of the system is always defined by the features of 

the current data. The vision procedures are the discrete actions, and these actions are non- 

deterministic in the sense that we cannot predict the features of the output based solely on the 

features of its input. 

To train a control policy, we train a Q-function for every vision procedure. In control theory, a 

Q-function is a function that predicts the expected reward that will follow from applying a 

specific action to the current state. For example, in ADORE we train a Q-function for predicting 

the reward that will result from applying the segmentation procedure to an ROI, based on the 

features of the ROI. We also train Q-functions for predicting the rewards that will follow from 

applying the active contour procedure to an ROI and the correlation procedure from an image. 

Control policies are implemented by evaluating the Q-function of every vision procedure that can 

be applied to the current data (based on its datatype) and selecting the procedure with the highest 

Q-value. 

It is important to note that the Q-function predicts the total reward that follows a procedure, not 

just the immediate reward. For example, in the experiments described below the immediate 

reward for resegmenting an ROI is zero, since the segmentation procedure returns a 2D contour 

while the training signal is given in terms of ROIs. Nonetheless, there can be a delayed reward 

for resegmenting an ROI, since the resulting contour can be transformed into another ROI 

through the Generalized Hough Transform procedure. The Q-function for the segmentation 
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procedure predicts this delayed reward, not just the immediate reward from the segmentation 

procedure. 

4.1.3) Off-line Learning 

The control and artificial intelligence literatures contain many techniques for learning optimal Q- 

functions for control problems with discrete state spaces. If the transition probabilities associated 

with the actions are known (a so-called process model), dynamic programming can be used to 

estimate Q-values and produce an optimal control strategy. In the absence of a process model, 

reinforcement learning (most notably the temporal difference [Sutton, 1988 #27] and Q-leaming 

[Watkins, 1989 #32] algorithms) have been shown to converge to optimal policies in a finite 

number of steps. 

Unfortunately, the object recognition control problem as defined here depends on a continuous, 

rather than discrete, state space. Tesauro [Tesauro, 1995 #28] and Zhang & Dietterich [Zhang, 

1995 #31] have shown empirically that neural nets can approximate Q-functions for continuous 

feature spaces within a reinforcement learning systems and still produce good control policies. 

Unfortunately, their method required hundreds of thousands of training cycles to converge. 

ADORE has a sequence of continuous feature spaces, one for each data representation (images, 

ROIs, contours, etc.). This requires getting a sequence of neural nets to converge on a control 

policy. Although theoretically possible, we have not yet succeeded in making this work. 

Instead, we train Q-functions by optimistically assuming that the best control policy will always 

select the action that creates the highest possible reward for every data token. Strictly speaking, 

this assumption is not always true: a control policy maps points in feature space onto actions, and 
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it is possible for two different tokens to have the same feature measurements and yet have 

different "optimal" actions. Nonetheless, the optimistic assumption is usually true, and it breaks 

the dependence between Q-functions, allowing each neural net to be trained separately. 

In particular, we approximate Q-functions by training backpropagation neural networks. The 

training samples are data tokens extracted from the training images. For each training sample, we 

apply all possible sequences of procedures, in order to determine which procedure yields the 

maximum reward . A neural network is trained for each vision procedures using the data features 

as input and the maximum reward from the data created by the vision procedure as the output.. In 

this way, the neural net learns to approximate the future reward from an action under the 

optimistic control assumption. (Complicating the picture somewhat, we "bag" the neural nets to 

reduce variance; see [Draper, 1998 #14].) 

5) Experiments 

To test ADORE in a tightly controlled domain, we trained it to recognize styles of houses in 

aerial images like the one in Figure 1. In the first experiment, the goal is to find duplexes of the 

type shown in Figure 2. The training signal is a bitmap that shows the position and orientation of 

the duplexes in the training images; Figure 5 shows the training signal matching the image shown 

in Figure 1. The reward function used to evaluate hypotheses during training is the size of the 

pixel-wise intersection of the hypothesis and the training signal, divided by the size of the union. 

This evaluation function ranges from one (perfect overlap) to zero (no overlap). 
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Figure 5: The training signal for Duplexes for the training image shown in Figure 1 

The Vision Procedure Library 

The vision procedure library contains ten 2D vision procedures, as depicted in Figure 6. Three of 

the procedures produce likelihood images (with orientation information) from intensity images 

and a template1. The rotation-free correlation procedure [Ravela, 1996 #26] correlates the 

template at each position in the image by first rotating the template until the direction of the edge 

at the center of the template corresponds to the edge direction at the center of the image window. 

The TAStat procedure is a modification of the algorithm in [Nguyen, 1990 #23]. For every image 

window it also rotates a mask of the object until it aligns with the local edge data, and then 

measures the difference between the intensity distributions of the pixels inside and outside of the 

mask. The greater the difference between the intensity distributions, the more likely the mask 

matches an object at that location and orientation in the image. Finally, the probing procedure 

also uses edge information to rotate the template for each image window, and then samples pairs 

of pixels in the image window, looking for edges that match the location of edges in the template. 
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Figure 6: A visual depiction of ADORE's current vision procedure library. Note that the peak 
detection procedure produces on the order of twenty ROIs each time it is caled. 

Regions of interest (ROIs) are chips from the original image that are hypothesized to correspond 

to object instances; each ROI also has a mask that details the hypothesized position and 

orientation of the object. ROIs can be extracted from likelihood images using a peak detection 

procedure, which finds the top N peaks in a likelihood image above a threshold. For these 

experiments, the peak detection procedure was parameterized to extract a maximum of twenty 

peaks from each likelihood image. 

Five procedures can be applied to any ROI. Two of these actions are the special actions 

mentioned in Section 4.1, accept and reject. Accept and reject are terminal actions that end the 

recognition process. The other three options are: 1) an active contour procedure [Kass, 1988 #34] 

that modifies the outline of an ROI mask until the contour lies along edges in the original image; 

2) a segmentation procedure [Comaniciu, 1997 #10] that extracts the boundary of a new region 

In all of our experiments, we assume that a template of the object is available. 
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(as a 2D contour) within the image chip; or 3) a straight line extraction procedure [Burns, 1986 

#7]. 

A Generalized Hough Transform procedure [Ballard, 1981 #5] matches 2D image contours to the 

contour of a template, thus creating new a ROI. A symbolic line matching procedure (LiME; 

[Beveridge, 1997 #6]) finds the rotation, translation and scale that maps template (model) lines 

onto image lines, again producing an ROI. It should be noted that LiME transforms hypotheses 

in scale as well as rotation and translation, which puts it at a disadvantage in this fixed-scale 

domain. 

5.2) Finding Duplexes 

To test the system's ability to learn duplex recognition strategies, we performed N-fold cross- 

validation on the set of eight Fort Hood images. In other words, we divided the data into seven 

training images and one test image, trained ADORE on seven training images, and then evaluated 

the resulting strategy on the test image. We repeated this process eight times, each time using a 

different image as the test image. All the results presented this paper are from evaluations of the 

test image. 

Figure 7 shows the results of two tests, with the ROIs extracted by ADORE overlaid in red on top 

of the test image. As a crude measure of success, ADORE found 21 out of 22 duplexes, while 

producing 6 false positives. The only duplex not found by ADORE can be seen in the image on 

the right of Figure 7- it is the duplex that is half off the bottom right-hand corner of the image! 

Every duplex that lies completely inside an image was recognized. (The right side of Figure 7 

also shows one false positive.) 
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Figure 7: Duplexes extracted from two images. In the image on the left, all three duplexes were 
found. On the right image, a false positive appears on the upper right side. Also, the half-visible 
duplex to the bottom right was the only instance missed during testing - and only half of that duplex 
lies inside the image. 

Analyzing ADORE in terms of false positives and false negatives is misleading, however. Much 

of the benefit of ADORE's dynamic strategies lies in its ability to refine imperfect hypotheses, 

not just make yes/no decisions. ADORE maximizes its reward function by creating the best 

hypotheses possible, given the procedure library. Table 1 gives a quantitative measure of 

ADORE's success. The left most entry in Table 1 gives the average reward across all 22 positive 

duplex instances from the optimal strategy, where the optimal strategy is determined by trying all 

sequences of procedures and taking the best result. The second entry gives the average reward 

generated by the strategy learned by ADORE. As further points of comparison: the third entry in 

Table 1 gives the average reward for duplex instances if no further processing is applied after 

hypotheses are generated; the fourth entry gives the average reward if every duplex ROI is 

segmented and the Generalized Hough Transform is used to reposition the ROI in terms of the 

region boundary; the fifth entry gives the average reward if the active contour procedure is 
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applied (followed by the Generalized Hough Transform); and the sixth entry is the average 

reward if lines are extracted from hypotheses, followed by the LiME symbolic matcher. 

Optimal        ADORE Fixed: Fixed: 
Policy Policy Accept or       Segment 

Reject 

Fixed: Fixed: 
Active Line 

Contours      Extraction 
0.8991 0.8803 0.7893 0.8653 0.7775 0.1807 Avg. 

Reward       ^  
Table 1: Comparison between the optimal policy, the policy learned by ADORE, and the four best 
fixed policies. The first row considers only positive instances; the second includes a penalty of-1 for 
each false positive. Note that there are 24 object instances. 

Two conclusions can be drawn from Table 1. First, the strategy learned by ADORE for this 

(admittedly simple) task is within about 98% of optimal. Second, the dynamic strategy learned 

by ADORE, although not perfect, is better than any fixed sequence of actions. (The best fixed 

sequence of actions is to always segment ROIs and apply the Generalized Hough Transform.) 

This implies that dynamic strategies are worth learning. 

Finding Smaller Houses 

Having succeeded in finding a good strategy for finding duplexes, we expected to easily repeat 

the process for other styles of houses. Indeed, we expected the resulting policies to be very 

similar to the duplex policy. We therefore repeated the experiment using the same methodology 

as above but with the house styles shown in Figure 8. 

To our dismay, ADORE identified 18 of 19 instances of the house style A but generated 22 false 

positives. Combining the results from house styles A through D, ADORE found 47 out of 61 

instances, while generating 85 false positives. 
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Figure 8: Templates of four other styles of houses (called A through D going left to right). 

Why is this problem harder than finding duplexes? The most critical control decision in this 

domain comes after ROIs are extracted from likelihood images. At this point, ADORE has a 

choice of five procedures: segmentation, active contours, line extraction, accept or reject. Of 

these five, line extraction rums out to never be the optimal choice, but the four other options are 

optimal for some ROIs. 

Therefore the control policy must select the optimal action based on features of the ROIs. By 

inspecting the weights of the neural net Q-functions trained for duplex recognition, we discovered 

that two of the eleven features dominated the control decision. The most important feature 

measures the average image edge strength along the boundary of the ROI. The second most 

important feature measures the percent of pixels outside the mask of the ROI that have roughly 

the same intensity value as pixels under the mask. (We informally refer to these as "missing- 

pixels, since their intensities suggest that they were accidentally left out of the hypothesis.) 

Based mostly on these two features, ADORE learns a strategy for picking the next procedure. If 

we interpret the behavior of the Q-functions in terms of these two features, we can describe the 

control strategy learned by ADORE as follows (see Figure 9): ROIs with very high boundary 

edge strength and very few "missing" pixels should be accepted as is. (The points in Figure 9 

correspond to training samples, color coded in terms of the optimal action for each ROI. Dark 

blue points correspond to ROIs that receive approximately the same reward whether segmented 
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or accepted as is.) If the edge strength is less high but relatively few pixels are "missing", then 

the ROI should be segmented. Although many false hypotheses - shown in yellow in Figure 9 

because the optimal action is to reject tern - are segmented according to this rule, there is another 

control decision after segmentation and the Generalized Hough Transform, where false 

hypotheses can be rejected and true ones accepted. This decision is made easier by the result of 

the segmentation procedure. There is also one small spot in the feature space where the active 

contour procedure is optimal. This is harder to explain and may result from the training set being 

a little too small. Finally, if the missing pixel count is high or the edge strength is low, reject the 

ROI. The solid boundaries in Figure 9 approximate our interpretation of thecontrol policy's 

decision boundaries. 

If we look at the edge strength feature for the other house recognition task, however, we find that 

it does not discriminate as well. It turns out that if you overlay the four templates shown in 

Figure 8 on top of each other, most of the boundaries are aligned. As a result, if an ROI for style 

A is incorrectly placed over an instance of styles B, C or D, the edges strength is still very high. 

(The same is true for ROIs of style B, C and D). As a result, when looking for one style of house, 

false hypotheses created by instances of the other style have high edge strength, so the feature is 

not very discriminating. As a result, ADORE has a harder time learning a strategy that can 

distinguish between true instances and false ones, with the result that many more false hypotheses 

are created. In effect, the difference in feature space between one style and the next is too small 

to reliably distinguish between them. 
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Figure 9: ROIs plotted in two dimensions of the eleven dimensional feature space. The color of the 
ROI point indicates the optimal control decision for that ROI. (Blue ROIs receive roughly the same 
reward whether they are submitted as is or refined through segmentation.) The ellipses correspond 
to our interpretation of the decision boundaries learned by the neural networks. 

6) Conclusion 

We have built a prototype adaptive object recognition system that is capable of learning good 

object-specific recognition strategies if and only if features of the intermediate data 

representations provide enough information to base intelligent control decisions on. Using this 

prototype, we have successfully learned a dynamic control policy that outperforms any fixed 

strategy for one recognition task. On the other hand, we were unable to learn a recognition 

strategy for another task when the target object class and background objects were too similar to 

be distinguished using ADORE's current features. 
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